extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22xDic5) = C2xS3xC5:2C8 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.1(C2^2xDic5) | 480,361 |
C6.2(C22xDic5) = D12.2Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | 4 | C6.2(C2^2xDic5) | 480,362 |
C6.3(C22xDic5) = S3xC4.Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 120 | 4 | C6.3(C2^2xDic5) | 480,363 |
C6.4(C22xDic5) = D12.Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | 4 | C6.4(C2^2xDic5) | 480,364 |
C6.5(C22xDic5) = C2xD6.Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.5(C2^2xDic5) | 480,370 |
C6.6(C22xDic5) = Dic5xDic6 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 480 | | C6.6(C2^2xDic5) | 480,408 |
C6.7(C22xDic5) = (S3xC20):5C4 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.7(C2^2xDic5) | 480,414 |
C6.8(C22xDic5) = Dic15:7Q8 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 480 | | C6.8(C2^2xDic5) | 480,420 |
C6.9(C22xDic5) = (S3xC20):7C4 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.9(C2^2xDic5) | 480,447 |
C6.10(C22xDic5) = C4xS3xDic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.10(C2^2xDic5) | 480,473 |
C6.11(C22xDic5) = Dic5xD12 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.11(C2^2xDic5) | 480,491 |
C6.12(C22xDic5) = S3xC4:Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.12(C2^2xDic5) | 480,502 |
C6.13(C22xDic5) = Dic15:8D4 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.13(C2^2xDic5) | 480,511 |
C6.14(C22xDic5) = C2xDic3xDic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 480 | | C6.14(C2^2xDic5) | 480,603 |
C6.15(C22xDic5) = C23.26(S3xD5) | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.15(C2^2xDic5) | 480,605 |
C6.16(C22xDic5) = C2xD6:Dic5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.16(C2^2xDic5) | 480,614 |
C6.17(C22xDic5) = C2xC6.Dic10 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 480 | | C6.17(C2^2xDic5) | 480,621 |
C6.18(C22xDic5) = Dic5xC3:D4 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.18(C2^2xDic5) | 480,627 |
C6.19(C22xDic5) = S3xC23.D5 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 120 | | C6.19(C2^2xDic5) | 480,630 |
C6.20(C22xDic5) = Dic15:17D4 | φ: C22xDic5/C2xDic5 → C2 ⊆ Aut C6 | 240 | | C6.20(C2^2xDic5) | 480,636 |
C6.21(C22xDic5) = C22xC15:3C8 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 480 | | C6.21(C2^2xDic5) | 480,885 |
C6.22(C22xDic5) = C2xC60.7C4 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 240 | | C6.22(C2^2xDic5) | 480,886 |
C6.23(C22xDic5) = C2xC4xDic15 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 480 | | C6.23(C2^2xDic5) | 480,887 |
C6.24(C22xDic5) = C2xC60:5C4 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 480 | | C6.24(C2^2xDic5) | 480,890 |
C6.25(C22xDic5) = C23.26D30 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 240 | | C6.25(C2^2xDic5) | 480,891 |
C6.26(C22xDic5) = D4xDic15 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 240 | | C6.26(C2^2xDic5) | 480,899 |
C6.27(C22xDic5) = Q8xDic15 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 480 | | C6.27(C2^2xDic5) | 480,910 |
C6.28(C22xDic5) = D4.Dic15 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 240 | 4 | C6.28(C2^2xDic5) | 480,913 |
C6.29(C22xDic5) = C2xC30.38D4 | φ: C22xDic5/C22xC10 → C2 ⊆ Aut C6 | 240 | | C6.29(C2^2xDic5) | 480,917 |
C6.30(C22xDic5) = C2xC6xC5:2C8 | central extension (φ=1) | 480 | | C6.30(C2^2xDic5) | 480,713 |
C6.31(C22xDic5) = C6xC4.Dic5 | central extension (φ=1) | 240 | | C6.31(C2^2xDic5) | 480,714 |
C6.32(C22xDic5) = Dic5xC2xC12 | central extension (φ=1) | 480 | | C6.32(C2^2xDic5) | 480,715 |
C6.33(C22xDic5) = C6xC4:Dic5 | central extension (φ=1) | 480 | | C6.33(C2^2xDic5) | 480,718 |
C6.34(C22xDic5) = C3xC23.21D10 | central extension (φ=1) | 240 | | C6.34(C2^2xDic5) | 480,719 |
C6.35(C22xDic5) = C3xD4xDic5 | central extension (φ=1) | 240 | | C6.35(C2^2xDic5) | 480,727 |
C6.36(C22xDic5) = C3xQ8xDic5 | central extension (φ=1) | 480 | | C6.36(C2^2xDic5) | 480,738 |
C6.37(C22xDic5) = C3xD4.Dic5 | central extension (φ=1) | 240 | 4 | C6.37(C2^2xDic5) | 480,741 |
C6.38(C22xDic5) = C6xC23.D5 | central extension (φ=1) | 240 | | C6.38(C2^2xDic5) | 480,745 |